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ABSTRACT

Deformacion theory (s used to model plastid de-
formation at the tip of a through-crack i{n a thin
shell. Ia che viciaity of the crack the shell (s
subjacted to both stretching and bending, dut
stretching (s assumed to dominate. Thus the stresses
are tensile, bduc vith a non-uniform distribution
through the thickness, vhich depends on the material
properties as well as on the geometry. The non-
linear near-tip filelds (wvhich are singular) have been
analyred asympeocically. Cracks i{n shallow shells
and spherical shells have been investigated (n some
detail. It is shown that the angular variacions are
the same as for generalized plane-stress plate prob-
lems. Assuming small-scale yialding a path-inde-
pendent intagral, which is valid in a region close to
the crack edge, (s used to connect che nonlinear
nesr-tip flelds with the corresponding singular parts
of the linear fialds. It (s shown that the nonlinear
benavior significantly affects the through-the-thick-
ness variations of the near-cip fields. The singu-
lar parts of the membrane stresses tend to become
more uniform through the thickness of the shell with
stronger strain hardening.

INTRODUCTION

A considerable dody of literaturs exists on the
computation of the flelds of stress and deformation
near a through-crack {(n a shell. Most of this work
has been motivated by applicacions in pressute vessel
technology. The published analytical work i3 gener-
ally based on classical shell cheory in which trans-
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verse shear deformation (s neglected. It (s also
almost exclusively concerned with linearly elascic
bshavior, see e.3. Refs. 1| - ).

In this paper small scale yielding near the edge
of a through-crack (n & shell (s (avestigated on the
basis of deformation theory with power-law strain
hardening. Thus, the strains are small, but the
stress-strain relacion (s noalinear. Effects of
transverse shear deformation are (mplied in the
analysis. In recent work on plates, & - 5, as well
a3 shells, 6§ - 3, {t has been shown that elastic near-
tip fields are of a different nature if shesr deforma-
tion (s explicitly excluded.

Deformation theory was used by Hutchinson 10 and
Rice and Rosengren 11 to analyze the near-tip fields
for pure stretching of a cracked sheet. Extensions to
bending of a flat plate, in a formulacion which ia-
cludes transverse shear, were {nvestigated by Achen-
bach and Bubenik 12. Here we further extend the re-
sults of 10 - 12 to through-cracks i{n shells.

Deformation cheory (s not valid for unloading,
and consequencly the results apply only when the
stresses are tensile throughout the thickness of the
shell. Hence ve can consider external loads which
3ive rise to bending and stretching, but the stretch-
ing must be dominant i{n order that the results of this
paper will be valid. We also restrict the attencion
to Mode-{ near-tip flelds. The transverse normal

stress (s neglected in the stress-strain law, which
implies that tite solutions are valid only for thin
Both spherical and shallow shells are treated
The non-linear near-tip fields are

shells.
in some detail.




related 0 the corresponding linear fields by & path-
iadependent integral.

CONSTITUTIVE RELATIONS

Siatlarly to the scudles of (n-plane deforma-
tion reported (n Refs. 10 and 12, the simplest de-
formacion theory with linearized scraia-displace-
ment relacions will be esployed. It (s assumed that
the plastic deformacion is locompressidble, end that
the plastic straias c‘: . and the scresses, 7, .,
are related dy ) )

? a-1

<, - LR " %

where . ) Ls the stress deviactor

"yt Yoo 8% @
and the “effective” stress (s defined as

2

bt IV
Ia £q.(1) a is the power hardeaing coefficient and C
is a material constant. The stresses have been non-
dimensionalized by a yield stress Y and the strains
have been normalized with respect to the correspond-
ing yleld strain Y/E, vhere £ {s the inicial slope of
the stress-strain curve for one-dimensional scress.

The dominant terms in the stresses and strains
{a the vicinity of a crack tip are governed by the
aonlinear relation £q.(1). Considering the case of
generalized plane stress, L.e.,

T4y %0, (&)

(3)

and taking i{nto account that the deformation (n the
aonlinear range is incompressible, i{.a.,

- » ,
c” 0 (&)

£q.(1) can de {averted to yield

! % ¢ Va g(1-a)/a f.'“ & Bt

® 1

U 22 8yl @

where
&l &

| S 3 c” .U .

Equation (6) defines the comstitutive relation
for power-lav strain hardening which will be used in
this paper. This conscitutive relacion is, of
course, really a nonlinear elastic stress-strain
relation; to represent plastic ylelding it can there-
fore only be used vhen the crack tip region is deing
monotonically loaded.

M

ASYMPTOTIC ANALYSIS OF NEAR-TIP FIELDS

For reference purposes the strain-displacement
relations and the equilibrium equations for an
arbitrary shell element are staced in the Appendix.
We assume that these cquations are also valid i(n the
iomediate vicinity of a crack tip. The stresses and
strains are related by the nonlinear constitutive
relations for deformation theory which were pre-
sented {n the previous section.

The asymptotic analysis of the near-tip filelds
is based on an assumed separation-of-variables form
of the near-tip displacements. In the subsequent
substitutions of these displacement expressions into
the strain-displacement relations, the constitutive
relations and the equilibrium equations only the
dominant terms are retained, which simplifies these

equations considerably. In sddition ve consider only
shallow shalls and spherical shells, for which the
extension and dending displacesments are uncoupled
™is provides further simplificacions. We do, how-
ever, lnclude transverse shesr deformation which, as
has besn shown for plactes and shells, see o g Refs.
& - 3. s necessary for consistent results.

For linearly elascic dehavior the general form
of near-tip fields for cracks in shallow shells has
been lavestigated see o 5. Raf. 3 T™e resulcs of
Ref. § have been obctained on the basis of the usual
assumpction for the displacesent variation through
the thickness of the shell, i.e.,

9 (3,3,,8) 5 (3.3,) + 2 2 y(a,.3,) )
w(a,,3,,0) = Way.3y) 9

where { = 1.2, la a polar coordinace systes (r,#)
cencared at the crack tip, the Mode-l near-tip
fialds are then of the forz

e ey (0 ot
3,(e8) =80 (8 ¢ an

wvhere v = r 3. The transverse displacement (s of
higher order i(a r, namely.

we,®) = oe’? (1
In £q.(11), 8 (s a constant, while

v, « *(x +v) [(2x-1) cos(¥/2) - con(3/D)] (13
Uy . i(x e v) ({2 + 1) s1a(9/2) + sta(30/2)] (14)

whare v Ls Polsson's ratio, and » (s the plane-stress
conscant

e (15)

1+yv

For a shell of arbitrary (but smooth) curvature,
and for constirtutive behavior according to deforma-
tion theory, it may be assumed that analogously to
the linearly elastic results for shallow shells given
by Eqe.(10)-(12), in cthe vicinity of the crack tip w
is again aa order or magnitude higher in r than the
in-plane displ 8. C q tly the third tera
in both £q.(73) and (74) may be ignored, as well as
the terms containing the stresses 11 and ¢, in
Eqs.(76) and (77). All terms in !q.'(70) l“ of
higher ordar, and Eq.(78) does, therafore, act enter
in the present consideracions.

Since the dominant terms {n Eqs.(73) - (™M)
scill contain and A, it will be best to consider
specific cases. Here 3. consider shallow shells and
spherical shells. For a gpherical shell ve have

ll .‘1 =R (16)

and polar coordinates (r,%) in the mid-plane define
orthogonal lines of principal curvature. It follows
from £qs.(70) and (71) that

Ay =l Ay =R sia(e/R) ¢ an

For a shallow shell we have

lﬁ":l“ll 18
‘1 RZ

and since curvature effects are neglected in the
strain-displacement relacions, r and 3 can also de




used as coordinates, with A, and A, defined by
£e. (17). : :

Analogously to the linearly elastic case wve now
consider the followiag asymproctcally valid ex-
pressions for the near-ctip displacements for sacer-
Lal Sehavior according to Jeformacion theory

u o ¢ o U e ' a9
uy o C KM U () fa) ¢? (20)
) “

v e (21)

T™e constant C (s the same as the one which appears
in the conscitutive relation, E£q.(1). T™e function
£(2), which need not de linear i(n ¥, (s positive in
accordance vith the requirement that no unloading
ogcurs (n a cross-sectional area. The purpose of
the analysis (s to decermine U, (3), f(2) and p.
Substizution of (19) - (21) (aco the stratn
displacement relactons (7)) - (%) ytelds for

shallow shells
et p U (@ go) e} ()
¢ * K" LU () « 0 (] o) ! (29
R LR (07 + (p=1) 1] ) ™} (20
For gphaerical shells ve find

¢ o UL @) (e (2%)

G W@ . n®] o aemt el e

1 r’-l

."-§ ¢ KMo (D DU )] g s e an

Ia the next step fq8.(22) - (27) are substitu-
ted (ato the expressions for the stresses, thac are
given dy £q.(8), to vield for the dominant terms

(p=1)/n

¢ =k f(a) :t(i) 3 (2’
7, = & K1) T8 olPoD/n (a9
€4 = & Ha) T 0 (LA (30

vhere

50 = 01« 2y ey 0] e/ gy

£, 00 -% W@ e ) v « 2y lese TV 0y
Sa(® @ 3 L0/@ « (1) g @O W (g
and £ (s defined by

-

B &0 S A PR
(£) <35 oteen) eupieen vy « b

R R USROS (3)
For a ghallow shell wve have

F(a) » Leca) VO (%)
while for a spherical shell

F(a) = LEa)/(reemy )t (38)

ALl other stresses, as well as all other tarms (n
£qs.(29) - (30) are of higher order near the crack
edge, and chey can bde neglected. Tae constant K in
£q8.(28) « (30) will henceforch bde called the
stress-intensity factor,

For bdoth and shallow shells substitu-
tion of fqe. (2 taco Eqs. (78) - (™M) vields
the following mauau for L \0) (" am T .\0)

when the terms of order r(' \ are collected

(l;-l.x):.:".._.o an |

S | 1 |

20 (u *1) Se*?® (0
™e (nertia terz: do not enter in these equations
since they are of order ™'  ™ae dependence on 2 !
cancels decause the functional dependence (s the same
for the leading terms collected (o Zqe.(37) and (38).

Governing equacions for U (%) and U.(O) are ob-
talned by substituting the equitions for the stresses,
Eqe. (J1) = (3)), (nco Eqe.(37) and ()8). Ve find 8
(Bep-Desetp] 0] + (=120 dpe1)) vty
2

-}f‘{:(xw) U, a0l (€9 .0 09

3
260 01e 3re29)) 0 olpe3e dp1)) vy
- Aot 2.
B2l sy @ a0 (40)
Tese equations verify cthat the d displ
diseriducions (19) - (21) lead to consistent results.
The governing equations (19) aad (40) asre (dentical
to those for dbending a flat plate, vwhich vere derived
independencly in Raf. 12, and which (a turn vere
shown to be itdentical o the equations for extension
of a flac place.
fquations ()9) and (40) must dbe supplemented by + 9
boundary conditions. For the present applications we 3
consider symmetry relative to § = 0, see Fig. !, L.oe..

.y

2
£

B e 0 w0 e 0 a1 ¥

In addition the faces of the crack are free of
stTesses, (.o,

'i(") -0 o“(ﬂ =0 (&2)

The systea of equations ()9) - (42) defines a non-
linear efgenvalue problem for U_(8), U_(2) and p.
T™is problem can de solved nmh:nlly. After sol-
ving for U (3) and 'J;(h. a solution {s obctained by
using a4 codventional fourth-order Runge-Xuctta aechod
wvith variable scepsize. This proe.duu i3 performed
from 3 « 0 to & =« . Sither 'J (0) or U.(0) can de
chosen ardbicrarily due to the .-o..m&. and equi-
dimensional nature of the governiag equacions. The
remaioning initial condizion and p musc de chosen o
meet the bdoundary conditions at & = 7. The coeffi-
clent p can, howaver, also de stated a-priori by J
requiring chat cercain integrals which will bde dis-
cussed Ln the next section have a finite, aonzero
value right near the crack edge, This requirement
gives

pel/(n+l) TS ))

Hence the problem (3 consideradlv simplified as only !
the ramaining initial condiction need de varied.
lteracion (s quick provided a veasonadble close firse
guess is used, The strasses and strains are computed
numerically from the displacements and their deriva-
tives, For n = 13, U (3) and U.(3) are shown in Fig
2. Te eolnlp«\d(n strvains .Ra stresses are shown
in Figs. 3 and & respectively. These results com-
pletely litn with results of Ref. 10, for plates in
pure extension, which vere computed on the dasis of
an Alry stress fupction formulacion,
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Fig. | Through crack in a thin shell

[t is noted that the angular variacions com-
puted here are valid for stactic as well as dynamic
sroblems, since in the vicinity of the crack edge
the inertia terms can de neglected as compared to
the terms cthat control the asvmptotic considerations
presented in this Section.

The stress-intensity factor K and the function
£(2) can of course not de determined by asymptocic
consideracions only. Thev may be determined bdy
connecting the near-cip fields to the far fields.

For the linearly elastic case the equations for
'Jr(e) and Ué(i\ ace

PR T+ (0e1) U+ 2p) U = 0 (44)

2pm) U+ (pF-1(a=1) Uy + (xel) U = 0 (&%)
where « is defined by Eq.(15). The solution to the
eigenvalue oroblem then yields p = 1/2, and the
angular discribuciocns defined by £qs.(1)) and (14).
The corresponding stresses are

g - § (3 - cosd) cos(3/2) (46)
:9 .% (1 + cos®) cos(8/2) (47)
Tee * é sind cos(8/2) (48)

For an {ncompressidle material (v = 1/2), Eqs.(44)
and (45) agree with the equations that are obtained
from £q8.(39) and (40) by setting n = 1.

AN INTECRAL WITH PATH- INDEPENDENT PROPERTIES

The asymptotic resulcs presenced in the prev-
ious section have to be supplemented by a method to
compute the stress-intensity factor X and the func-
tion £(2). Several known soluctions which include the
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4. 3 Surface A enclosing a crack edge {n a shell

effect Of transverse shesr are available for linearly
elastic srodblems, see Refs. 9 - 3. Ia this section
ve present 4 msethod to compute ¥ and f(z) for de-
formecion theory from the corresponding K and f(z)
for linearly elascic dehavior.

Flgure 5 shows & shell vith & through crack,
and & surface A which encloses the crack edge The
surface A is normal o the atdplane of the shall,
and i(ts projection on the shell's atd-plane (s =
{t (s now not difficult to show that in the wvicinity
of the crack edge the following surfac: tategral has
the same value for all surfaces of the sind A:

Ny
5L -I A by * %y Ta"“‘; de 40 (&9)

A 1
Here { and | are either |, 2 or ), where ! and 2
refer to the curvilinear coordinates shown (a Fig. 1,
and 3 refers to ¢, and ¥ denotes the atrain energy
{0 prove this feature of J we consider & surface

aade up of AT and A", and two cvlindrical sur-
fdces A, and A, of the type A, where A" and A" are
the aurh“ ardas detween the i(ntersections of A,
and A, with the top and bottom faces of the shell.
The lume enclosed by A_ (s denoted dy V. To show
that “

Ji =] (50)
v
we consider an extension of £q.(49) to the closed
surface A
b
M
‘wa,, - - (s1)
J‘\T.L' ( 1 GU \1 !\JM (s

An application of Causs' theorem vields
i MW,
w8 I \ : )
J‘\T.é ;.3;._- LA a“# av (32)
(ntegration by parts and the use of the relacions

Sng o

i (R W T (33
QU-) -9 (5&)
subsequently reduces £q.(52) to
N
e { q o't e g‘ 4v 3
. l
Since A, = A, + A, = A" + 47, and since for tractioa-
free shéll !lcu Ve have
JA" - JL' e Q
che result given by £q (50) follows, provided that
aither q = 0 (¢ 28]
or a" =0 (38

The case g = 0 corresponds o the usual J-integral
for three-dimensional deformacion. Cenera.lv

e e 0, exceapt in the ilomediate vicinity of the
cnek tip where & _ can indeed de i(gnoved as i {3
of higher order as compared to the .ther stresses.
Thus near cthe crack edge . as given dv £q. (<3 has
the same value for all surTaces o the tvpe A.

NEAR-TIP FIZLDS ACCORDING T0 DEFORMATION THIORY

In this paper it (s assumed that the material
Sehaves nonlinearly close to the crack edge, and

RCSE




linearly alsevhere. Ve now make the additional
assumption of small-scale ylelding, to connect the
nonlinesr flelds to the singular carts of the linear
flelds via the inctegral J, given dy Iq.(49), which

i valid for bdoch the LU and nonlinear fields
close to the crack tip. Thus we can take two cir-
cular cylindrical surfaces A u:‘:; centared at the
crack edge, and employ the n&u resules of chis
paAper o compute JL} and the correspondiog linear

results Lo compute The coeffictent g (a fq.

L
2

(49) (s however an ardicrary (nteger, which (mplies
that

I® | oars e * @ !u (39)
for a contour near the crack tip, where

L
I(a) -I[ 4y - oy, g}] a, dr (60)
r

The i(ntegral J(z) {s of the same form as the usual
J-integral. It depends, however, oo 2z in a sanner
prescrided by the particular shell theory.

For the aonlinear field J(z) gives for sphaert-
cal shells,

(l+m)

Ja) = ¢ K v tm_“’“”“(x N {)'"“ (61)

and for shallow shells,

ey o ¢ e [z(.)]““‘”‘ (62)
where [ (3 just the same as defined in Raf. 10 and
12, e,

8, gl < T_(U,-u’)- 2
1= j:' {n’l e cosd - sin .'(U‘ U‘) E‘Q(U"Ug)l

- T

? cosd (-rUr'S“Ua)} 49 (83)
vhare T and E' are defined Sy EZqs. (31) and (3.
la Bgq. f&]) wve fave also used that

2, = & Ha) T (a) (1) (64)

As an example, we consider the case vhen the elastic

near-tip displacements are linearly discriduted, {.e.

0
t(e) linear

k1 | o (
s (1 03) F(s) Giness * 1+ 3z (89)
Here | ts a function of bSoth the applied dending and
eaxtansion loads, see for example Ref. ] 3y using
£q.(835) tha J-iategral can bde svaluated as

2
\ 2 + '2)

(2} Haoke bl K, TSR] (66)
where X, is the linear stress-intensity factor.
Equating Tqs.(66) and (81) or (62) yields

2ed 1/(a+l)
K= T— (67)

and, afcer an expansion for small 2z, one finds for
spherical shells,

:(a)-lo;h(znco%ﬂwa¢
2 S )
-“-(.-é)oﬁ-‘n*n-}}-“m-éd (68)

5 - ke .

T~y

gf 1|
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Filg. 5 Through-cthe-chickness vartiation of the near-
tip displacements in a shallow shell

The corresponding expression for shallow shells is
tdentical to the asbove when R is set equal to
infianicy.

For § = 0.4 curves for the displacemencs and
stresses corresponding to f(z) | are shown in
Figs. 6 < 9 Figs. 5 and 7 are P&P’!ﬂum shells
with the coefficient n chosen as 1, ) and 13. Figs
8 and 9 are for spherical shells with a equal =0 )
and R equal to 3, 7 and infiaity Ia these curves,
2z and R are normalized with respect to one-half of
the shell thickness.

It {s noteworthy that the through-the-thickness
diseribucion of the stresses decomes more uniform for
stronger sctrain hardening, i{.a., for higher values
of a, as shown in Fig. 7. The i(nfluence of curvature
on the through-the-thickness distribucions appears to
be relatively small, ac least for spherical shells,
as can de seen from Figs. 3 and 3.

CONCLUDING COMMENT

In this paper daformation theory was applied o
represent plastic deformation at the tip of a through-
erack in a shell, where che affect of transverse
shear deformation was included in the analvsis., T™he
plastic deformation {n the near-tip region vas re-
lated to the corresponding linearly elastic deforma-
tion via a path-independent integral. Thus, once :
the elascic fields, wnich are represented bv the
stress-inctensity factor, have been computed, the
method of this paper can bde used to compute, for
example, near-tip plastic strains. These strains can
then be related to a fracture criterion, vielding a 3
final result wvhich (s completely in terms of linearly <
elastic results, as is consistent with small-scale
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tip scresses {n a shpherical snell.
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APPENDIX
SOME RESULTS TROM SHELL THEORY

An element of a shell whose faces are free of
tractions is showm ia Fig. 1. In a cartesian coordi-
nate system (x, ,x,,x,) the aiddle surface may bde
defined in :u-& 3! !ho curvilinear coordinates

¥, and 3, which are taken %0 coincide vith the
o&:honail lines of principal curvature, (. e.,
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2=t 4 (69)
where ? {s the position vector of poiats in the
midd le-surface of the shell., The position of a
point in the shell is specified by ¥ , a, and the
normal coordinate z. The magaitude &f a"differen-
tial element of length is then given by

ds? « Ai(l#{;)z 4ai«\§(1—{;)2 d:§

where ll and ‘2 are the principal radii of curvature,
and

+ d2? (70)
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The strain-displacement relations can be found
in books on shell theory, see e.g. Ref. 13, ». 25.
The strains relevanc to the present paper are
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Here u,,u, 3nd v are the displacement components in
the a,, 35 end z directions, respectively. In the
vtctal:y 3! 4 crack tip the other sctrains are of
higher order, and they will not enter here.

In the (a,, 2,, 2) - coordinate systea the
three-dimensional dquactions of equilibrium can be
found i{n Ref. 14, p.7. We hlv.o
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